网站导航 进入旧版 English

涂料技术

研究模具涂层涂装施工的两种发展方向

时间:2012-01-13 12:42:58 来源: 作者:爱卡 点击:
提高模具耐用度的远景方向是用离子注入法和爆炸喷涂法在模具工件元件上涂覆强化涂层。

1离子注入法

离子注入(Ionimplantatin)就是将工件放在离子机的真空靶室中,在几十至几百kV的电压下,把所需元素的离子注入到工件表面,以改善模具工作元件的耐磨性的一种技术,我国从79年开始相继进行离子注入的试验形容,包括理论研究、实验室研究和工业性应用试验等。

近来,真空-等离子工艺的新方向-离子注入在国外亦不断发展。离子注入过程是借助高能量的离子束将任意元素注入固体表面层内(离子能量由若干kev至10Mev),最通常的离子注入可用来提高材料的耐磨性各耐蚀性。离子注入是通过形成强化层提高材料的耐磨性,与基体是扩散联接,无明显分界面。强化层的厚度显著超过离子行程的深度(当离子能量为0.1Mev时,层厚0.1μm)。

同样,在真空中、高离子-等离子涂覆涂层是最有效过程,因获得的层厚可用微米测量,且涂层是高强度耐磨性、高硬度和高塑性的新材料。但是,获得的涂层与基体是粘除联接,而不是扩散联接。

这样,最有前景的方法是离子注入与离子-等离子涂覆工艺相结合。因此,真空离子-等离子涂覆工艺相结合。因此,真空离子-等离子涂覆法将演变成等离子化学注入法。它有下列主要优点:1)深的气体扩散(根据炉底板温度,可从0.005mm至0.3mm)。2)被蒸发的金属可扩散到基体表面层内(根据炉底板温度,可从0.005mm至0.3mm)。3)在基体材料内可获得组织过渡层,从而可在其上涂覆给定性能和特殊性能的涂层。

研制等离子化学注入法的先决条件是下列原则。在利用真空离子-等离子法涂覆涂层时,当“激活区”的面积恒定时热流通功率可按下式确定:M=U基I

式中U基——基准电压;I——离子电流。

对表面状态影响最大的是离子流的动能:W=(1/Z)ε

式中Z——平均放电倍数;ε——离子流的平均能量。

在真空-等离子工艺中最常用材料的等离子流的离子组分的参数列于下表:

材料原子量平均放电倍数离子化程度离子束内离子的平均能量ev离子电流A

将上述数值代入公式,并按公式计算后可确定,钼离子的动能和热流功率分别较钛离子大3倍和1倍。被蒸发金属的离子化程度愈大,则离子流的密度愈大。

将热处理后的Cr12MoV钢试样和经钛离子和铬离子(其活化能分别为113.13kJ/mol和129.89kJ/mol)轰击的同样试样,进行静弯曲比较试验,结果表明在第二种情况,不中断真空过程,而进行涂覆涂层。

离子-等离子涂覆工艺过程是一个多参数过程。其中每个参数(或者各种参数的结合)均影响到涂层的基本成分、组织和性能。分析离子等离子过程各参数间的定量关系,可定向改变上述这些性能,最终可控制被强化工件的工作能力。例如,仅改变一个参数如真空室内的压力,这时在沉积多层和单层氮化基础课基涂层时可按氮化物数量改变相成分:在单层涂层内钛和氮化物的平均含量分别为15%和85%,在多层涂层内分别为47%和54%。

单层涂层因厚度和硬度较大,故具有显著的脆性,并可能由于工作时振动和冲击而破坏。多层涂层的强度特性符合金属冲压加工的条件,但带这种涂层的模具其耐用度可能低于单层涂层的模具。因为多层涂层的单一硬度往往较单层涂层的耐磨层薄,并且配置在软相上。

因此,必须研制获得较大密度的单层涂层。

为此目的,研究了当真空室内的压力P不同时,涂层厚度与基准电压U基值的变化关系。已确定,起初提高基准电压时,涂层厚度在真空室内任意压力下均被增大。并且当U基=100~150V时其过到最大值。进一步提高基准电压时,涂层厚度逐渐减小,且真空压力P愈低。例如,当P=10-3Pa时,就是在U基=400V时未形成涂层,而当U基>400V时将产生表面的溅射。类似过程还产生在P=10-2Pa和10-1Pa时。但是,表面溅射产生在U基=670~700V时和U基>1600C时。

获得的涂层厚度与基准电压和真空室内压力的关系,可研制原理新的多层涂层涂覆工艺。变种涂层具有稳定的特殊性能。用新法获得的氮化钛基涂层是由100个特薄硬度的交替层组成的结构。涂层的化学成分由7~9%α-Ti和93~91%γ-Ti组成,6.18g/cm3,显微硬度为37GPa左右。这种涂层被涂在模具的成形元件上可提高耐磨性1.1~1.4倍。

这样,离子注入与真空离子-等离子涂覆相结合,将演变成等离子化学注入过程。它可提高模具成形元件的耐磨性、强度各耐蚀性。

关键词: 研究模具涂层
发布评论
  • 验证码:

热门论坛

进入论坛