涂料助剂
涂料助剂的发展现状及对策
【本网】3.2 纳米添加剂
纳米材料具有表面效应、小尺寸效应、光学效应、量子尺寸效应、宏观量子尺寸效应等特殊性质,可以使涂料获得新的功能。如粒度进入纳米尺度,材料表面活性中心的增多可提高其化学催化和光催化的反应能力,在紫外线和氧的作用下给予涂层自清洁能力;表面活性中心与成膜物质的官能团可发生次化学键结合,大大增加涂层 的刚性和强度,从而改进涂层的耐划伤性;经过表面经过改性的纳米材料用于内外墙涂料可以获得同时憎水和憎油的特性,显著提高涂层的耐污性并可提高耐候性;某些粒径小于 100 nm 的纳米材料对 α 、 γ 射线具有吸收和散射作用,可提高涂层防辐射的能力,在内外墙涂料中起到防氡气的作用;将纳米材料用在底漆中,可以增加底漆和基材的附着力,提高机械强度、且纳米级的颜料与底漆的强作用力及填充效果有助于改进底漆与涂层的截面结合;纳米材料在面漆中可起到表面填充和光洁作用,提高面漆的光泽,减少阻力;纳米 二氧化硅添加到外墙涂料中可提高涂料的耐擦洗性;纳米碳酸钙可提高聚氨酯的强度、硬度等。
3.2.1杀菌功能
以纳米 TiO2 或其他材料为催化剂,利用光催化的方法氧化降解空气中的有机挥发物是近年来日益受到重视的一项污染治理新技术。这个过程不需要其他化学助剂,反应条件温和,而且最终产物通常只有水和 CO2, 不会产生二次污染,极具发展潜力。有结果证实,许多种气相有机污染物可以通过光催化氧化过程快速分解,包括脂肪烃、醇、醛、酮、卤代烃、芳烃、硫醇及杂原子有机物等,美国环保局公布了 9 大类 114 种有机物被证实可以通过光催化氧化处理,该方法尤其适合于无法或难以生物降解的有毒有机物质的处理。
自1972年Fujishima和Hondo发现受紫外线照射的 TiO2 可持续发生水的氧化还原反应产生 H2 ,Frank等将半导体材料用于催化光解污染物取得突破性进展以来,光催化技术便受到了广大研究者的关注。研究表明,影响 TiO2 光催化效果的因素主要有结构方面和制备条件。
国内的研究者近几年在这个领域也做了许多工作。张玉林等通过优化纳米 TiO2 表面处理工艺和配方组合,解决了纳米 TiO2 应用与分散技术,开发的纳米 TiO2 涂料具有超亲水性和光催化性,可有效的吸附和分解空气中的有害气体,并已建立了中试生产线。肖劲松等在涂料中应用了直径约 10 nm 的 TiO2 ,制备的涂料对 HCHO 、 SO2 和 NO2 有很好的光催化能力。夏明芳等以丙烯酸改性有机硅树脂为粘合剂,聚氨酯为固化剂,制备了可室温固化的光催化涂料,并对降解氟苯的性能进行了研究。中科院成都有机化学研究所与攀钢集团攀枝花市钢铁研究院在日前合作完成的“纳米 TiO2 及其应用技术研究”项目中,制备成功光催化自洁内墙涂料,可以光催化方式降解甲醛和抗菌,检测结果表明,使用该涂料后室内甲醛净化率为 81.1% ,同时对大肠杆菌和金黄色葡萄球菌的抗菌率分别为 51.79% 和 61.9% 。
3.2.2自洁功能
我国城市的环境污染正在加剧,其中粉尘污染、气体污染尤为严重。高层建筑外墙作为城市的一道主要风景线,正在受到越来越严重的侵蚀。建筑外墙涂料可以美化环境和居室,但是由于传统涂料耐洗刷性差,时间不长墙壁就变得斑驳陆离。
根据荷叶的自清洁原理,通过特殊结构与形貌的无机颗粒材料选用和改性,使涂料在干燥成膜过程中能在涂层表面形成微观的凹凸形貌,这种具有凹凸形貌的微观涂层表面既可以使灰尘颗粒附着在涂层表面呈悬空状态,灰尘颗粒与涂层表面作用力大大降低,也使水与涂层表面的接触角大大增加,有利于水珠在涂层表面的滚落;同 时又根据涂层的自分层原理,将疏水性物质引入乳液中,使涂料干燥成膜过程中能自动分层,从而在涂层表面富集一层疏水层,有利于进一步降低灰尘颗粒与涂层表面作用力和进一步提高水对涂层表面的接触角。最终使堆积或吸附的污染性微粒在风雨的冲刷下可以脱离涂层表面,达到自清洁的目的。
一般疏水材料如氟树脂表面与水的接触角约为110o,而加入纳米TiO2后,其表面与水的接触角可达160o,显示出超疏水性。利用此特性,可以使其表面具有防水滴、防污等特性。由于纳米尺寸低凹的表面可使吸附气体分子稳定存在,所以在宏观表面上相当于有一层稳定的气体薄膜,使油或水无法与材料的表面直接接触,呈现超常的双疏性,这时水滴或油滴与界面的接触角趋于最大值。
纳米技术中一个很关键的问题是粉体的分散。在制备阶段,粉体的团聚会导致颗粒的长大;在贮存阶段,粉体同样会发生团聚而影响其使用;在应用阶段,如果纳米粉体没有得到良好的分散,则其纳米尺度效应则无法实现。目前,解决纳米粉体分散问题的主要方法是表面处理技术:通过一定物理或化学方法,通过在特性吸附或沉 淀等作用,在粉体表面包覆一定厚度的无机或有机物。
目前纳米添加剂的应用主要集中在隔热涂料、纳米抗菌涂料、纳米界面涂料、大气净化涂料等。国内纳米涂料的发展大多刚刚起步,主要集中在改善建筑外墙涂料的耐候性和建筑内墙涂料的抗菌性方面,二者基本上已研制成功,正在进行产业化准备工作。
4 专用化
内外墙会遭受水分的侵蚀,外墙经常遭受雨水,而雨水会导致漆膜变色、泪痕等问题;内墙如卫生间、厨房等处,墙面也处于潮湿的环境中。因此,对于这些场合,涂膜的抗水性受到了重视,用于漆膜表面疏水改性的表面处理剂也有了较大发展。目前主要的产品种类为蜡乳液和有机硅乳液,如 Cognis 的 Perenol HF-200 、 Tego 的 Phobe 1401 、 Dow Corning 的 2601 Coating 。
除 了这种后添加的疏水助剂外,分散剂也有类似的抗水功能,如 Cognis 的 Hydropalat 34 / 100 、北京富斯特化工的 FX-108 、上海威肯化学品的 DL102 、广州中化的 Dispersant GC-2130 、北京麦尔化工的 GRS HY-1030 。这类抗水型分散剂主要是氨盐的聚合物,由于氨在成膜后会挥发,吸附在无机物表面的分散剂恢复成原来的水不溶形式,降低了无机颜、填料表面的亲水性,因此适用于外墙乳胶漆等耐水性要求较高的体系。
4.2 胶体改性剂
乳液和颜、填料是乳胶漆的主要成分,乳液为疏水性,而无机颜、填料为亲水性,疏水的乳液和亲水的颜、填料难以在一个体系中稳定的存在,由此而导致颜、填料的絮凝和涂料的分水、分层等现象。因此,分散剂、增稠剂等被应用在涂料的制备过程中,以获得颜、填料的良好分散及稳定悬浮,从而改善涂料的储存稳定性。
然而,在高颜料体积浓度乳胶漆中,分散剂的使用并不能完全消除颜、填料粒子的聚集。传统的阴离子型羧酸盐类分散剂主要是以提高颜、填料粒子的表面电位,利用双电层原理使颜、填料粒子得以在水中分散。但羧酸盐类分散剂与颜、填料粒子表面电荷相同,因此分散剂与颜、填料粒子间的吸附很弱,分散剂很容易从颜、填料 表面脱离,从而引起弱絮凝。
基于此,胶体改性的理念得以提出,这里的胶体泛指无机颜、填料的分散体。通过对胶体的改性,在颜、填料表面增加高分子缔合点,提高了分散剂在颜、填料粒子表面的吸附力,分散剂的作用从而得以更加有效的发挥。高分子缔合点的增加使得颜、填料表面更加 疏水,因而与乳液间的相容性也得到了显著的改善。目前市场上的胶体改性剂只有 KNP 的 Colloid Modifier 134。
下一篇:涂料助剂的发展现状及对策(五)
相关文章
发布评论