涂料文集
介绍防腐环氧树脂粘接涂层的研究进展
2.3EP基体的改性
辅助成膜物质填料对粘接涂层的防腐性能影响很大,同时对EP基体进行改性也能显著提高粘接涂层的防腐性能[1,18-22]。Aggarwal等[21]研究结果表明:在其他条件保持不变的情况下,以腰果酚作为EP的改性剂,则改性EP粘接涂层的防腐性能优于未改性EP体系(如表2所示)。这是由于腰果酚中含有的极性羟基,可有效提高涂层的润湿性和活性;间位含不饱和双键的C15直链,可赋予粘接涂层良好的韧性、优异的憎水性、低渗透性和自干性。
辅助成膜物质填料对粘接涂层的防腐性能影响很大,同时对EP基体进行改性也能显著提高粘接涂层的防腐性能[1,18-22]。Aggarwal等[21]研究结果表明:在其他条件保持不变的情况下,以腰果酚作为EP的改性剂,则改性EP粘接涂层的防腐性能优于未改性EP体系(如表2所示)。这是由于腰果酚中含有的极性羟基,可有效提高涂层的润湿性和活性;间位含不饱和双键的C15直链,可赋予粘接涂层良好的韧性、优异的憎水性、低渗透性和自干性。

表2 粘接涂层的耐化学介质性能
国内也有学者[22]以PS-b-PDMS(聚苯乙烯-b-聚二甲基硅氧烷嵌段共聚物)作为EP的改性剂(如表3所示)制备防腐粘接涂层。研究结果表明:PS-b-PDMS能有效改善粘接涂层的防腐性能,并且这种防腐性能的提高与涂层疏水性能的提高是分不开的;体系中引入PS-b-PDMS后,低表面能的PDMS在粘接涂层表面富集,表层的Si-O-Si结构可有效增强涂层对水或腐蚀性介质的抗渗透能力,致使粘接涂层的防腐性能得以明显提高。

表3 粘接涂层的耐化学介质性能
2.4导电EP防腐粘接涂层的发展
目前,EP导电防腐粘接涂层是通过EP粘接涂层中引入导电性聚合物(如掺杂剂聚苯胺、聚吡咯和聚噻吩等)而制成的,并且已成为该研究领域的重要发展方向[23-26]。
导电聚合物主链上含有共轭л结构,л电子的流动虽能使聚合物导电,但其电导率不大。将掺杂剂引入体系中,虽可明显增强聚合物的导电性能,但共轭导电聚合物的主链呈刚性,而且链与链之间的百电子体系相互作用力很强,致使导电聚合物具有难溶难熔特点(加工性能极差),并且掺杂剂的存在易产生脱胶现象[25-26]。
导电防腐粘接涂层的防腐机制虽不确定,但主要有下列几种说法:①导电聚合物膜层因其电位低于金属而更易氧化,并且所形成的氧化物很难溶解,故其防腐能力更持久;②导电聚合物与金属表面反应后生成的钝化层,改变了金属表面的电位(使金属电位提高或形成阻挡层),即导电聚合物以阳极形式保护了金属材料;③导电聚合物在金属表面产生电场(电场方向与电子传递方向相反),阻碍了电子从金属向氧化物的传递(起到了电子传递的屏障作用)。
Bagherzadeh等[24]以纳米聚苯胺粒子作为双组分EP粘接涂层的改性剂。研究结果表明:钢铁表面形成的氧化铁层,可有效保护钢铁不被腐蚀;当ω(纳米聚苯胺)=0.02%(相对于EP质量而言)时,改性前后粘接涂层在盐雾环境中处理650h后,未改性粘接涂层在划痕处的被腐蚀宽度(>16mm)大于改性粘接涂层(1~2mm),并且前者在无划痕处的被腐蚀面积(31%~40%)大于后者(0)。
导电防腐粘接涂层防腐效率的影响因素较多,如掺杂剂、腐蚀介质以及导电聚合物的种类和用量等[25-26]。王建雄[25]采用化学氧化法合成了十二烷基苯磺酸(DBSA)掺杂的聚苯胺(DBSA-PAM)、本征态的聚苯胺(EB)和磷酸掺杂的聚苯胺(H3P04-PANI)等,然后按一定配比制成相应的EP粘接涂层。研究结果表明:当ω(DBSA-PAM)=l%(相对于EP质量而言)时,试样在3.5%NaCl溶液或1mol/LHC1溶液中,其防腐性能均超过耐蚀性十级标准的7级(尚耐蚀)和耐蚀性三级标准的2级(可用)。
3结语
(1)目前EP防腐粘接涂层多为溶剂型体系,不符合低VOC型、环保型产品的发展要求,因此,在满足防腐性能的前提下,EP防腐粘接涂层的发展趋势是水性化、无溶剂化。
(2)水性EP粘接涂层中引入部分含亲水基的化合物或乳化剂后,易导致涂层脱落,并且其耐水性能不如溶剂型EP,从而间接影响了粘接涂层的防腐性能。除添加防腐填料、改进基体外,还要从增加EP涂层的交联密度方面着手[如在保持水性EP体系稳定的前提下,添加环氧值较高的EP作为基体、引入某些能与环氧基反应的物质(如甲壳素)等],使粘接涂层的附着力提高,同时也使其防腐性能得到保证[2]。
目前,EP导电防腐粘接涂层是通过EP粘接涂层中引入导电性聚合物(如掺杂剂聚苯胺、聚吡咯和聚噻吩等)而制成的,并且已成为该研究领域的重要发展方向[23-26]。
导电聚合物主链上含有共轭л结构,л电子的流动虽能使聚合物导电,但其电导率不大。将掺杂剂引入体系中,虽可明显增强聚合物的导电性能,但共轭导电聚合物的主链呈刚性,而且链与链之间的百电子体系相互作用力很强,致使导电聚合物具有难溶难熔特点(加工性能极差),并且掺杂剂的存在易产生脱胶现象[25-26]。
导电防腐粘接涂层的防腐机制虽不确定,但主要有下列几种说法:①导电聚合物膜层因其电位低于金属而更易氧化,并且所形成的氧化物很难溶解,故其防腐能力更持久;②导电聚合物与金属表面反应后生成的钝化层,改变了金属表面的电位(使金属电位提高或形成阻挡层),即导电聚合物以阳极形式保护了金属材料;③导电聚合物在金属表面产生电场(电场方向与电子传递方向相反),阻碍了电子从金属向氧化物的传递(起到了电子传递的屏障作用)。
Bagherzadeh等[24]以纳米聚苯胺粒子作为双组分EP粘接涂层的改性剂。研究结果表明:钢铁表面形成的氧化铁层,可有效保护钢铁不被腐蚀;当ω(纳米聚苯胺)=0.02%(相对于EP质量而言)时,改性前后粘接涂层在盐雾环境中处理650h后,未改性粘接涂层在划痕处的被腐蚀宽度(>16mm)大于改性粘接涂层(1~2mm),并且前者在无划痕处的被腐蚀面积(31%~40%)大于后者(0)。
导电防腐粘接涂层防腐效率的影响因素较多,如掺杂剂、腐蚀介质以及导电聚合物的种类和用量等[25-26]。王建雄[25]采用化学氧化法合成了十二烷基苯磺酸(DBSA)掺杂的聚苯胺(DBSA-PAM)、本征态的聚苯胺(EB)和磷酸掺杂的聚苯胺(H3P04-PANI)等,然后按一定配比制成相应的EP粘接涂层。研究结果表明:当ω(DBSA-PAM)=l%(相对于EP质量而言)时,试样在3.5%NaCl溶液或1mol/LHC1溶液中,其防腐性能均超过耐蚀性十级标准的7级(尚耐蚀)和耐蚀性三级标准的2级(可用)。
3结语
(1)目前EP防腐粘接涂层多为溶剂型体系,不符合低VOC型、环保型产品的发展要求,因此,在满足防腐性能的前提下,EP防腐粘接涂层的发展趋势是水性化、无溶剂化。
(2)水性EP粘接涂层中引入部分含亲水基的化合物或乳化剂后,易导致涂层脱落,并且其耐水性能不如溶剂型EP,从而间接影响了粘接涂层的防腐性能。除添加防腐填料、改进基体外,还要从增加EP涂层的交联密度方面着手[如在保持水性EP体系稳定的前提下,添加环氧值较高的EP作为基体、引入某些能与环氧基反应的物质(如甲壳素)等],使粘接涂层的附着力提高,同时也使其防腐性能得到保证[2]。
下一篇:分析喷漆常见故障原因及解决措施
相关文章
发布评论