涂料科普
探讨涂层产生皱纹的原理
2非固化型涂料的起皱
通过凝固而不是固化方法也能够使涂层产生皱纹,不过必须是双层体系,其中面层刚硬而下层柔软易于产生形变。对微电子电路而言,这种电子胶水涂层的双层结构在经受高温循环时,容易发生面外形变并进而破坏其完整性和电路的连接性,是有害的,要尽量避免[20-21]。最近,利用双层涂层控制产生定向皱纹的研究取得一定的进展[22-24],这种特殊取向的皱纹图案在衍射光栅[25]、光学传感器、微接触印迹邮票[26]以及利用来测定聚合物薄膜的弹性[27]等方面得到应用。
表层为无机或金属材料,而底层为附着于刚性底材上的厚的聚合物或橡胶,这样的双层结构被许多研究者研究和报道[28-33]。当上层受到压缩弯曲并发生面外形变时,皱纹图案出现。在以往的报道中,表层所受到的压缩主要由以下几种方法产生:一是通过机械应力压缩涂层;二是通过升高或降低涂层温度,使处于平衡的、无应力态涂层产生膨胀或收缩[28-33],由于不同层之间的热膨胀系数的差异,当涂层温度降低或升高时,每一层收缩或膨胀的程度都会存在差别,从而在每一层都会产生不同的内张力。依体系的不同,通过升高和降低温度都可以使上层受到压缩,例如当金属在高温下沉积在厚的弹性体上面形成薄层时,体系被冷冻时上层受到压缩。这时,金属上层和弹性体底层之间的热膨胀系数的差异就至关重要[28-30]。另外,对于在室温下把金属沉积成膜于附着在刚性底材的弹性体上面形成的多层结构而言,体系受到加热时顶层受到压缩,这时金属顶层和底材的热膨胀系数的差异最为重要[31-32]。在所有报道的起皱体系里,聚合物底层要么是易于变形的橡胶弹性体,要么是在起皱出现前,把温度升高到涂层树脂的玻璃化温度以上,从玻璃态转变成橡胶态[22,31,32]。
3结语
所有固化型皱纹涂料成膜物都含有多种不同反应活性的官能团,在固化时,随着固化反应的进行在涂膜深度方向产生交联梯度,并形成粘附于底层上的交联弹性膜。下层的液体反应物扩散进入面层使面层产生压缩应力,足够高的压缩应力最终使面层弯曲而产生皱纹。双层的非固化型涂层,上层硬而下层软,吸湿或热膨胀系数的差异产生压缩应力,并使上层受到压缩产生起皱现象。涂层起皱涉及物理和化学以及工艺条件等多种因素,起皱原理研究是一项极其复杂的研究课题,深入了解其发生的内在原因是实现涂层形貌的有效控制以及灵活利用的最终途径。
通过凝固而不是固化方法也能够使涂层产生皱纹,不过必须是双层体系,其中面层刚硬而下层柔软易于产生形变。对微电子电路而言,这种电子胶水涂层的双层结构在经受高温循环时,容易发生面外形变并进而破坏其完整性和电路的连接性,是有害的,要尽量避免[20-21]。最近,利用双层涂层控制产生定向皱纹的研究取得一定的进展[22-24],这种特殊取向的皱纹图案在衍射光栅[25]、光学传感器、微接触印迹邮票[26]以及利用来测定聚合物薄膜的弹性[27]等方面得到应用。
表层为无机或金属材料,而底层为附着于刚性底材上的厚的聚合物或橡胶,这样的双层结构被许多研究者研究和报道[28-33]。当上层受到压缩弯曲并发生面外形变时,皱纹图案出现。在以往的报道中,表层所受到的压缩主要由以下几种方法产生:一是通过机械应力压缩涂层;二是通过升高或降低涂层温度,使处于平衡的、无应力态涂层产生膨胀或收缩[28-33],由于不同层之间的热膨胀系数的差异,当涂层温度降低或升高时,每一层收缩或膨胀的程度都会存在差别,从而在每一层都会产生不同的内张力。依体系的不同,通过升高和降低温度都可以使上层受到压缩,例如当金属在高温下沉积在厚的弹性体上面形成薄层时,体系被冷冻时上层受到压缩。这时,金属上层和弹性体底层之间的热膨胀系数的差异就至关重要[28-30]。另外,对于在室温下把金属沉积成膜于附着在刚性底材的弹性体上面形成的多层结构而言,体系受到加热时顶层受到压缩,这时金属顶层和底材的热膨胀系数的差异最为重要[31-32]。在所有报道的起皱体系里,聚合物底层要么是易于变形的橡胶弹性体,要么是在起皱出现前,把温度升高到涂层树脂的玻璃化温度以上,从玻璃态转变成橡胶态[22,31,32]。
3结语
所有固化型皱纹涂料成膜物都含有多种不同反应活性的官能团,在固化时,随着固化反应的进行在涂膜深度方向产生交联梯度,并形成粘附于底层上的交联弹性膜。下层的液体反应物扩散进入面层使面层产生压缩应力,足够高的压缩应力最终使面层弯曲而产生皱纹。双层的非固化型涂层,上层硬而下层软,吸湿或热膨胀系数的差异产生压缩应力,并使上层受到压缩产生起皱现象。涂层起皱涉及物理和化学以及工艺条件等多种因素,起皱原理研究是一项极其复杂的研究课题,深入了解其发生的内在原因是实现涂层形貌的有效控制以及灵活利用的最终途径。
上一篇:涂料增稠的临时应对措施
下一篇:如何防治屋面及外墙渗漏
相关文章
发布评论